0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

了解集成式嵌入式視覺(jué)平臺(tái)應(yīng)用設(shè)計(jì)

工程師兵營(yíng) ? 2018-09-18 14:57 ? 次閱讀

隨著攝像頭和其他設(shè)備產(chǎn)生的數(shù)據(jù)在快速增長(zhǎng),促使人們運(yùn)用機(jī)器學(xué)習(xí)從汽車(chē)、安防和其他應(yīng)用產(chǎn)生的影像中提取更多有用的信息。專用器件有望在嵌入式視覺(jué)應(yīng)用中實(shí)現(xiàn)高性能機(jī)器學(xué)習(xí) (ML) 推理。但是此類器件大都處于早期開(kāi)發(fā)階段,因?yàn)樵O(shè)計(jì)人員正在努力尋找最有效的算法,甚至人工智能 (AI) 研究人員也在迅速推演新方法。

目前,開(kāi)發(fā)人員一般使用針對(duì) ML 的可用 FPGA 平臺(tái)來(lái)構(gòu)建嵌入式視覺(jué)系統(tǒng),以期滿足更高的性能要求。與此同時(shí),他們可以保持所需的靈活性,以跟上機(jī)器學(xué)習(xí)發(fā)展的步伐。

本文將介紹 ML 處理的要求,以及為何 FPGA 能解決許多性能問(wèn)題。然后,將介紹一個(gè)合適的基于 FPGA 的 ML 平臺(tái)及其使用方法。

機(jī)器學(xué)習(xí)算法和推理引擎

在 ML 算法中,卷積神經(jīng)網(wǎng)絡(luò) (CNN) 已成為圖像分類的首選解決方案。其圖像識(shí)別的準(zhǔn)確率非常高,因而得以廣泛應(yīng)用于多種應(yīng)用,跨越不同的平臺(tái),例如智能手機(jī)、安防系統(tǒng)和汽車(chē)駕駛員輔助系統(tǒng)。作為一種深度神經(jīng)網(wǎng)絡(luò) (DNN),CNN 使用的神經(jīng)網(wǎng)絡(luò)架構(gòu)由專用層構(gòu)成。在對(duì)標(biāo)注圖像進(jìn)行訓(xùn)練期間,它會(huì)從圖像中提取特征,并使用這些特征給圖像分類(參見(jiàn)“利用現(xiàn)成的軟硬件啟動(dòng)機(jī)器學(xué)習(xí)”)。

CNN 開(kāi)發(fā)人員通常在高性能系統(tǒng)或云平臺(tái)上進(jìn)行訓(xùn)練,使用圖形處理單元 (GPU) 加速在標(biāo)注圖像數(shù)據(jù)集(通常數(shù)以百萬(wàn)計(jì))上訓(xùn)練模型所需的巨量矩陣計(jì)算。訓(xùn)練完成之后,訓(xùn)練好的模型用在推理應(yīng)用中,對(duì)視頻流中的新圖像或幀進(jìn)行分類。推理部署完成后,訓(xùn)練好的模型仍然需要執(zhí)行同樣的矩陣計(jì)算,但由于輸入量要少很多,開(kāi)發(fā)人員可以將 CNN 用于在通用硬件上運(yùn)行的普通機(jī)器學(xué)習(xí)應(yīng)用(參見(jiàn)“利用 Raspberry Pi 構(gòu)建機(jī)器學(xué)習(xí)應(yīng)用”)。

然而,對(duì)于許多應(yīng)用而言,通用平臺(tái)缺乏在 CNN 推理中同時(shí)實(shí)現(xiàn)高準(zhǔn)確率和高性能所需的性能。優(yōu)化技術(shù)和替代 CNN 架構(gòu)(如 MobileNet 或 SqueezeNet)有助于降低平臺(tái)要求,但通常會(huì)犧牲準(zhǔn)確率并增加推理延時(shí),而這可能與應(yīng)用要求相沖突。

與此同時(shí),快速發(fā)展的算法使得機(jī)器學(xué)習(xí) IC 的設(shè)計(jì)工作變得復(fù)雜,因?yàn)樾枰獧C(jī)器學(xué)習(xí) IC 既要足夠?qū)iT(mén)化以加速推理,又要足夠通用化以支持新算法。FPGA 多年來(lái)一直扮演著這一特定角色,提供加速關(guān)鍵算法所需的性能和靈活性,解決了通用處理器性能不足或沒(méi)有專用器件可用的問(wèn)題。

FPGA 作為機(jī)器學(xué)習(xí)平臺(tái)

對(duì)于機(jī)器學(xué)習(xí)而言,GPU 仍然是標(biāo)桿——這是早期的 FPGA 根本無(wú)法企及的。最近出現(xiàn)的一些器件,如 Intel Arria 10 GX FPGA 和 Lattice Semiconductor ECP5 FPGA,大大縮小了先進(jìn) FPGA 和 GPU 之間的差距。對(duì)于某些使用緊湊的整數(shù)數(shù)據(jù)類型的 DNN 架構(gòu)來(lái)說(shuō),此類 FPGA 的性能/功耗比甚至高于主流 GPU。

高級(jí) FPGA 組合了嵌入式存儲(chǔ)器和數(shù)字信號(hào)處理 (DSP) 資源,對(duì)于一般矩陣乘法 (GEMM) 運(yùn)算能夠?qū)崿F(xiàn)很高的性能。其嵌入式存儲(chǔ)器靠近計(jì)算引擎,從而緩解了 CPU 存儲(chǔ)器瓶頸,而這種瓶頸通常會(huì)限制通用處理器上機(jī)器學(xué)習(xí)算法的性能。反之,相比于典型 DSP 器件(圖 1),F(xiàn)PGA 上的嵌入式 DSP 計(jì)算引擎提供了更多的并行乘法器資源。FPGA 廠商在交付專門(mén)用于機(jī)器學(xué)習(xí)的 FPGA 開(kāi)發(fā)平臺(tái)時(shí)充分利用了這些特性。

Lattice Semiconductor ECP5 高級(jí) FPGA 示意圖

圖 1:Lattice Semiconductor ECP5 之類的高級(jí) FPGA 提供了實(shí)現(xiàn)高性能推理所需的并行處理資源和嵌入式存儲(chǔ)器。(圖片來(lái)源:Lattice Semiconductor)

例如,Intel 最近推出的支持 FPGA 的 OPENVINO? 擴(kuò)展了該平臺(tái)將推理模型部署到不同類型設(shè)備(包括 GPU、CPU 和 FPGA)的能力。在該平臺(tái)上,開(kāi)發(fā)人員可使用 Intel 的深度學(xué)習(xí)推理引擎工作流程,其中整合了 Intel 深度學(xué)習(xí)部署工具包和在 Intel OPENVINO 工具包中提供的 Intel 計(jì)算機(jī)視覺(jué)軟件開(kāi)發(fā)套件 (SDK)。開(kāi)發(fā)人員使用 SDK 的應(yīng)用編程接口 (API) 構(gòu)建模型,并且可利用 Intel 的運(yùn)行模型優(yōu)化器針對(duì)不同硬件平臺(tái)進(jìn)行優(yōu)化。

深度學(xué)習(xí)部署工具包旨在與 Intel DK-DEV-10AX115S-A Arria 10 GX FPGA 開(kāi)發(fā)套件配合使用,讓開(kāi)發(fā)人員能從領(lǐng)先的 ML 框架(包括 Caffe 和 TensorFlow)導(dǎo)入訓(xùn)練好的模型(圖 2)。在諸如 Arria 10 GX FPGA 開(kāi)發(fā)套件之類目標(biāo)平臺(tái)或使用 Arria 10 GX FPGA 器件的定制設(shè)計(jì)上,工具包中的模型優(yōu)化器和推理引擎分別處理模型轉(zhuǎn)換和部署。

圖 2:支持 FPGA 的 Intel OPENVINO 工具包提供了一套必需的完整工具鏈,可將在 Caffe、TensorFlow 和其他框架上訓(xùn)練的模型部署到 Arria 10 GX FPGA 開(kāi)發(fā)套件或圍繞 Arria 10 GX FPGA 構(gòu)建的定制設(shè)計(jì)上。(圖片來(lái)源:Intel)

為了遷移預(yù)訓(xùn)練模型,開(kāi)發(fā)人員使用基于 Python 的模型優(yōu)化器生成了一個(gè)中間表示 (IR),該表示包含在一個(gè)提供網(wǎng)絡(luò)拓?fù)涞?xml 文件和一個(gè)以二進(jìn)制值提供模型參數(shù)的 bin 文件中。除了生成 IR 之外,模型優(yōu)化器還會(huì)執(zhí)行一項(xiàng)關(guān)鍵功能——移除模型中用于訓(xùn)練但對(duì)推理毫無(wú)作用的層。此外,該工具會(huì)在可能的情況下將每個(gè)提供獨(dú)立數(shù)學(xué)運(yùn)算的層合并到一個(gè)組合層中。

通過(guò)這種網(wǎng)絡(luò)修剪和合并,模型變得更緊湊,進(jìn)而加快推理時(shí)間并減少對(duì)目標(biāo)平臺(tái)的存儲(chǔ)器需求。

Intel 推理引擎是一個(gè) C++ 庫(kù),其中包含一組 C++ 類。這些類對(duì)于受支持的目標(biāo)硬件平臺(tái)來(lái)說(shuō)是通用的,因此可以在各個(gè)平臺(tái)上實(shí)現(xiàn)推理。對(duì)于推理應(yīng)用而言,開(kāi)發(fā)人員使用像 CNNNetReader 這樣的類來(lái)讀取 xml 文件 (ReadNetwork) 中包含的 CNN 拓?fù)湟约?bin 文件 (ReadWeights) 中包含的模型參數(shù)。模型加載完成后,調(diào)用類方法 Infer() 執(zhí)行阻塞推理,同時(shí)調(diào)用類方法 StartAsync() 執(zhí)行異步推理,當(dāng)推理完成時(shí)使用等待或完成例程處理結(jié)果。

Intel 在 OPENVINO 環(huán)境提供的多個(gè)示例應(yīng)用程序中演示了完整的工作流程和詳細(xì)的推理引擎 API 調(diào)用。例如,安全屏障攝像機(jī)示例應(yīng)用程序展示了使用推理模型流水線,以首先確定車(chē)輛邊界框(圖 3)。流水線中的下一個(gè)模型檢查了邊界框中的內(nèi)容,識(shí)別車(chē)輛類別、顏色和車(chē)牌位置等車(chē)輛屬性。

圖 3:Intel 安全屏障攝像機(jī)示例應(yīng)用程序演示了使用推理流水線,先識(shí)別車(chē)輛(綠色邊界框),再識(shí)別顏色、類型和車(chē)牌位置(紅色框)等車(chē)輛屬性,最后識(shí)別車(chē)牌字符(紅色文本)。(圖片來(lái)源:Intel Corp.)

流水線中的最后一個(gè)模型使用這些車(chē)輛屬性從車(chē)牌中提取字符。為了使用該模型進(jìn)行推理,示例代碼顯示了利用推理模型 C++ 庫(kù)創(chuàng)建對(duì)象 (LPR),而該對(duì)象則是名為 LPRDetection 的結(jié)構(gòu)的一個(gè)實(shí)例。此結(jié)構(gòu)使用推理引擎 API 類對(duì)象來(lái)讀取 (CNNNetReader) 并驗(yàn)證模型輸入和輸出(列表 1)。

副本CNNNetworkread()override{
std::cout<second;
inputInfoFirst->setInputPrecision(Precision::U8);
inputInfoFirst->getInputData()->setLayout(Layout::NCHW);
inputImageName=inputInfo.begin()->first;
autosequenceInput=(++inputInfo.begin());
inputSeqName=sequenceInput->first;
if(sequenceInput->second->getTensorDesc().getDims()[0]!=maxSequenceSizePerPlate){
throwstd::logic_error("LPRpost-processingassumescertainmaximumsequences");
}

//---------------------------Checkoutputs
std::cout<first;
std::cout<

列表 1:此代碼片段來(lái)自 Intel OPENVINO 工具包中的安全屏障攝像機(jī)示例應(yīng)用程序,演示了使用 Intel 推理引擎 C++ 庫(kù) API 將模型及其參數(shù)讀入推理引擎的設(shè)計(jì)模式。(代碼來(lái)源:Intel)

為了執(zhí)行推理,該代碼加載數(shù)據(jù)并調(diào)用 submitRequest 方法,該方法啟動(dòng)推理周期并等待結(jié)果,然后顯示識(shí)別的車(chē)牌字符(列表 2)。

副本if(LPR.enabled()){//licenceplate
//expandingaboundingboxabit,betterforthelicenseplaterecognition
result.location.x-=5;
result.location.y-=5;
result.location.width+=10;
result.location.height+=10;
autoclippedRect=result.location&cv::Rect(0,0,width,height);
cv::MatPlate=frame(clippedRect);
//----------------------------RunLicensePlateRecognition
LPR.enqueue(Plate);
t0=std::chrono::high_resolution_clock::now();
LPR.submitRequest();
LPR.wait();
t1=std::chrono::high_resolution_clock::now();
LPRNetworktime+=std::chrono::duration_cast(t1-t0);
LPRInferred++;
//----------------------------Processoutputs
cv::putText(frame,
LPR.GetLicencePlateText(),
cv::Point2f(result.location.x,result.location.y+result.location.height+15),
cv::FONT_HERSHEY_COMPLEX_SMALL,
0.8,
cv::Scalar(0,0,255));
if(FLAGS_r){
std::cout<

列表 2:此代碼片段來(lái)自 Intel OPENVINO 工具包中的安全屏障攝像機(jī)示例應(yīng)用程序,展示了加載模型、執(zhí)行推理和生成結(jié)果的設(shè)計(jì)模式。(代碼來(lái)源:Intel)

集成式嵌入式視覺(jué)平臺(tái)

Intel 的 OPENVINO 方法強(qiáng)調(diào)平臺(tái)重定向,而 Lattice 的 SensAI 平臺(tái)完全聚焦于 FPGA 推理。SensAI 平臺(tái)的特性之一是為 DNN 架構(gòu)(包括 CNN 和一個(gè)稱為二值化神經(jīng)網(wǎng)絡(luò) (BNN) 的緊湊架構(gòu))提供 FPGA IP。針對(duì)嵌入式視覺(jué),SensAI CNN IP 為完整的推理引擎提供框架,將控制子系統(tǒng)、存儲(chǔ)器、輸入和輸出的接口與實(shí)現(xiàn)不同類型模型層(包括卷積、BatchNorm 歸一化、ReLu 激活、池化和其他)的資源結(jié)合在一起(圖 4)。

圖 4:Lattice Semiconductor CNN IP 實(shí)現(xiàn)了一個(gè)完整的推理系統(tǒng)框架,將專用引擎和用于控制、存儲(chǔ)器、輸入、輸出的接口結(jié)合在一起。(圖片來(lái)源:Lattice Semiconductor)

為了實(shí)現(xiàn) CNN 模型,開(kāi)發(fā)人員首先要在針對(duì) ECP5 FPGA 的 Lattice Diamond 設(shè)計(jì)環(huán)境中或針對(duì)其他 Lattice FPGA 系列的 Radiant 設(shè)計(jì)環(huán)境中,利用 Lattice Clarity 配置工具配置 CNN。這里,開(kāi)發(fā)人員可以指定模型類型(CNN 或 BNN)、卷積引擎數(shù)(最多 8 個(gè))及每層的內(nèi)部存儲(chǔ)大小(最多 16 Kb)或二進(jìn)制大對(duì)象 (blob)。配置 CNN 之后,開(kāi)發(fā)人員使用設(shè)計(jì)環(huán)境生成核心,作為 FPGA 比特流。

開(kāi)發(fā)人員單獨(dú)將通過(guò) Caffe 或 TensorFlow 開(kāi)發(fā)并訓(xùn)練好的模型導(dǎo)入 SensAI 平臺(tái)。這里,Lattice 神經(jīng)網(wǎng)絡(luò)編譯器將訓(xùn)練好的 Caffe 或 TensorFlow 模型轉(zhuǎn)換為一組包含神經(jīng)網(wǎng)絡(luò)模型參數(shù)和執(zhí)行命令序列的文件。SensAI 平臺(tái)將來(lái)自設(shè)計(jì)環(huán)境和編譯器的單獨(dú)輸出一起并入 FPGA,以提供最終的推理模型(圖 5)。

圖 5:Lattice Semiconductor SensAI 平臺(tái)將其 CNN 和 BNN IP 與其神經(jīng)網(wǎng)絡(luò)編譯器結(jié)合在一起,使開(kāi)發(fā)人員能夠轉(zhuǎn)換 Caffe 或 TensorFlow 模型,以在 Lattice FPGA 上作為推理引擎來(lái)運(yùn)行。(圖片來(lái)源:Lattice Semiconductor)

針對(duì)嵌入式視覺(jué)應(yīng)用,Lattice LF-EVDK1-EVN 嵌入式視覺(jué)開(kāi)發(fā)套件 (EVDK) 為運(yùn)行 CNN 模型推理提供了理想的目標(biāo)平臺(tái)。EVDK 提供了一個(gè)完整的 80 x 80 mm 三板堆疊式視頻平臺(tái),包括 Lattice CrossLink 視頻輸入板、帶 ECP5 FPGA 的處理器板和 HDMI 輸出板。開(kāi)發(fā)人員可以將 EVDK 用作 Lattice 提供的多個(gè)示例 CNN 應(yīng)用的目標(biāo)平臺(tái)。例如,Lattice 速度標(biāo)志檢測(cè)參考設(shè)計(jì)運(yùn)用 EVDK 來(lái)展示 SensAI CNN IP 在典型汽車(chē)應(yīng)用中的應(yīng)用(圖 6)。

Lattice Semiconductor 速度標(biāo)志檢測(cè)參考設(shè)計(jì)示意圖

圖 6:Lattice Semiconductor 速度標(biāo)志檢測(cè)參考設(shè)計(jì)利用 SensAI 平臺(tái)和 Lattice LF_EVDK1-EVN 嵌入式視覺(jué)開(kāi)發(fā)套件提供一個(gè)完整的推理應(yīng)用,開(kāi)發(fā)人員可以對(duì)其立即操作或詳細(xì)探索。(圖片來(lái)源:Lattice Semiconductor)

此示例應(yīng)用程序的項(xiàng)目文件包括全套文件,從 Caffe caffemodel 和 TensorFlow pb 格式的模型開(kāi)始。因此,開(kāi)發(fā)人員可以探索這些模型的細(xì)節(jié)。例如,使用 TensorFlow import_pb_to_tensorboard.py 實(shí)用程序,開(kāi)發(fā)人員可以導(dǎo)入 Lattice 提供的 pb 模型,以查看此示例應(yīng)用程序中使用的 CNN 的細(xì)節(jié)(圖 7)。本例中,所提供的模型是由四個(gè)“Fire”模塊組成的序列,每個(gè)模塊包括:

  • Conv2D 層,執(zhí)行 3 x 3 卷積以從輸入流中提取特征

  • 激活層,執(zhí)行 BatchNorm 歸一化,然后執(zhí)行修正線性單元 (ReLU) 激活

  • MaxPool 池化層,用于對(duì)前一層的輸出進(jìn)行采樣

圖 7:Lattice 速度標(biāo)志檢測(cè)示例應(yīng)用程序包括 TensorFlow pb 模型,開(kāi)發(fā)人員可以將其導(dǎo)入 TensorBoard 進(jìn)行詳細(xì)檢查。注意:數(shù)據(jù)向上流過(guò)此圖中的各層。(圖片來(lái)源:Digi-Key Electronics)

開(kāi)發(fā)人員可以使用 SensAI 平臺(tái)生成模型文件,完成前面描述的模型流程?;蛘?,開(kāi)發(fā)人員可以使用所提供的文件直接跳轉(zhuǎn)到部署階段。任一情況下,文件都是通過(guò)接有適配器的 microSD 卡加載到 EVDK 中。

在操作中,EVDK 上的攝像機(jī)向 ECP5 FPGA 提供視頻流,其中配置的 CNN 加速器 IP 執(zhí)行命令序列以執(zhí)行推理。同任何推理引擎一樣,每個(gè)輸出通道都會(huì)產(chǎn)生一個(gè)結(jié)果,指出與該輸出通道相關(guān)聯(lián)的標(biāo)簽即為輸入圖像的校正標(biāo)簽的概率。本例中,模型是用每小時(shí) 25、30、35、40、45、50、55、60 和 65 英里的限速標(biāo)志的標(biāo)注圖像進(jìn)行訓(xùn)練的。因此,當(dāng)模型在其輸入字段中的任何位置檢測(cè)到限速標(biāo)志時(shí),它會(huì)顯示檢測(cè)到的標(biāo)志對(duì)應(yīng)于每小時(shí) 25、30、35、40、45、50、55、60 或 65 英里限速的概率(圖 8)。

圖 8:Lattice 速度標(biāo)志檢測(cè)演示運(yùn)行在 Lattice EVDK 上,對(duì)視頻輸入流執(zhí)行推理,生成輸出值,指示捕獲到的圖像對(duì)應(yīng)于與該特定輸出相關(guān)聯(lián)的標(biāo)簽的可能性。本例中,它顯示限速標(biāo)志最有可能是 25 mph。(圖片來(lái)源:Lattice Semiconductor)

總結(jié)

為在嵌入式視覺(jué)應(yīng)用中運(yùn)用機(jī)器學(xué)習(xí),開(kāi)發(fā)人員使用可用硬件平臺(tái)實(shí)現(xiàn)所需性能水平的能力受到了限制。然而,高性能 FPGA 的出現(xiàn)使得開(kāi)發(fā)人員可以構(gòu)建性能接近 GPU 的推理引擎。采用專為嵌入式視覺(jué)設(shè)計(jì)的機(jī)器學(xué)習(xí) FPGA 平臺(tái),開(kāi)發(fā)人員可以專注于特定需求,使用標(biāo)準(zhǔn)機(jī)器學(xué)習(xí)框架訓(xùn)練模型,并依靠 FPGA 平臺(tái)實(shí)現(xiàn)高性能推理。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1624

    文章

    21585

    瀏覽量

    600865
  • 嵌入式
    +關(guān)注

    關(guān)注

    5055

    文章

    18935

    瀏覽量

    301206
  • 機(jī)器視覺(jué)
    +關(guān)注

    關(guān)注

    161

    文章

    4312

    瀏覽量

    119929
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    ARMxy嵌入式計(jì)算機(jī)在機(jī)器視覺(jué)中的卓越表現(xiàn)

    處理系統(tǒng)和輸出顯示系統(tǒng)三部分組成。嵌入式視覺(jué)系統(tǒng)硬件集成攝像頭模組和處理板,將圖像捕獲和圖像處理功能結(jié)合在一臺(tái)設(shè)備中。設(shè)備支持邊緣計(jì)算,接收和處理數(shù)據(jù),做出決策,然后將數(shù)據(jù)發(fā)送到其他設(shè)備,或本地或基于云的處
    的頭像 發(fā)表于 10-10 14:47 ?166次閱讀
    ARMxy<b class='flag-5'>嵌入式</b>計(jì)算機(jī)在機(jī)器<b class='flag-5'>視覺(jué)</b>中的卓越表現(xiàn)

    嵌入式主板是什么意思?嵌入式主板全面解析

    嵌入式主板,通常被稱為嵌入式系統(tǒng)的核心組件,是一種用于控制和數(shù)據(jù)處理的計(jì)算機(jī)硬件,其設(shè)計(jì)旨在嵌入特定設(shè)備中執(zhí)行專門(mén)任務(wù)。嵌入式主板如同是設(shè)備的“大腦”,主要功能是根據(jù)需要管理和控制設(shè)備
    的頭像 發(fā)表于 09-30 10:05 ?271次閱讀

    嵌入式linux開(kāi)發(fā)板芯片的工作原理

    嵌入式Linux開(kāi)發(fā)板是一種基于Linux操作系統(tǒng)的嵌入式系統(tǒng)開(kāi)發(fā)平臺(tái),它廣泛應(yīng)用于工業(yè)控制、智能家居、智能交通、醫(yī)療設(shè)備等領(lǐng)域。 嵌入式Linux開(kāi)發(fā)板概述
    的頭像 發(fā)表于 09-02 09:07 ?270次閱讀

    嵌入式系統(tǒng)中的實(shí)時(shí)操作系統(tǒng)

    嵌入式RTOS是嵌入式應(yīng)用程序運(yùn)行、相互交互和與外界通信的底層軟件機(jī)制。在本節(jié)中,您將了解嵌入式軟件開(kāi)發(fā)人員使用哪些流行RTOS以及它們運(yùn)行的嵌入式
    的頭像 發(fā)表于 08-20 11:28 ?378次閱讀

    機(jī)器視覺(jué)嵌入式中的應(yīng)用

    機(jī)器視覺(jué)嵌入式系統(tǒng)中的應(yīng)用是一個(gè)廣泛而深入的話題,涉及到許多不同的領(lǐng)域和技術(shù)。 機(jī)器視覺(jué)嵌入式系統(tǒng)中的應(yīng)用 1. 引言 機(jī)器視覺(jué)是一種模
    的頭像 發(fā)表于 07-16 10:30 ?391次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源受限的嵌入式平臺(tái)上,仍然是一個(gè)具有挑戰(zhàn)性的任務(wù)。本文將從嵌入式平臺(tái)的特點(diǎn)、深度學(xué)習(xí)算法的
    的頭像 發(fā)表于 07-15 10:03 ?1014次閱讀

    嵌入式系統(tǒng)怎么學(xué)?

    工具:熟悉常用的嵌入式系統(tǒng)開(kāi)發(fā)工具,包括集成開(kāi)發(fā)環(huán)境(IDE)、編譯器、調(diào)試器(如Keil、IAREmbedded Workbench、Eclipse)等。 5、實(shí)時(shí)操作系統(tǒng)(RTOS):了解實(shí)時(shí)
    發(fā)表于 07-02 10:10

    如何提升嵌入式編程能力?

    如何提升嵌入式編程能力? 要提升嵌入式編程的能力,可以從以下幾點(diǎn)學(xué)習(xí): 1. 理解硬件:熟悉你正在編程的硬件平臺(tái),包括微控制器、處理器、內(nèi)存、輸入/輸出設(shè)備等基礎(chǔ)理論與應(yīng)用。 2. 學(xué)習(xí)基本原理
    發(fā)表于 06-21 10:01

    嵌入式技術(shù)領(lǐng)域的視覺(jué)、安全與AI應(yīng)用

    本次2024年度德國(guó)版嵌入式世界展的大獎(jiǎng)評(píng)選共收到全球百余家企業(yè)的申請(qǐng),經(jīng)由評(píng)審團(tuán)嚴(yán)格篩選,最終選出三項(xiàng)候選提名,并于會(huì)場(chǎng)進(jìn)行了隆重的頒獎(jiǎng)儀式。其中,嵌入式視覺(jué)、安全與安防、人工智能等應(yīng)用領(lǐng)域備受矚目。
    的頭像 發(fā)表于 04-29 11:20 ?314次閱讀

    嵌入式主板,你了解多少?

    嵌入式主板,也稱為嵌入式計(jì)算機(jī)主板,是一種專門(mén)設(shè)計(jì)用于嵌入式系統(tǒng)的計(jì)算機(jī)主板。與臺(tái)式機(jī)和筆記本電腦中使用的常規(guī)主板不同,嵌入式主板設(shè)計(jì)用于集成
    的頭像 發(fā)表于 04-17 15:11 ?1344次閱讀

    嵌入式fpga是什么意思

    嵌入式FPGA是指將FPGA技術(shù)集成嵌入式系統(tǒng)中的一種解決方案。嵌入式系統(tǒng)是一種為特定應(yīng)用而設(shè)計(jì)的計(jì)算機(jī)系統(tǒng),它通常包括處理器、內(nèi)存、外設(shè)接口等組件,并且被
    的頭像 發(fā)表于 03-15 14:29 ?1140次閱讀

    fpga是嵌入式

    FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)不是嵌入式系統(tǒng),但FPGA在嵌入式系統(tǒng)中有著重要的應(yīng)用。
    的頭像 發(fā)表于 03-14 17:19 ?2033次閱讀

    嵌入式學(xué)習(xí)步驟

    開(kāi)發(fā)。 嵌入式學(xué)習(xí)步驟總結(jié)如下: (1).確定目標(biāo)平臺(tái):選擇適合您要開(kāi)發(fā)的嵌入式系統(tǒng)的硬件平臺(tái)。這取決于您要控制的設(shè)備以及您需要執(zhí)行的任務(wù)。 (2).選擇編程語(yǔ)言:
    發(fā)表于 02-02 15:24

    高端嵌入式實(shí)驗(yàn)平臺(tái)

    一、整體概述 該嵌入式平臺(tái)具有前沿性、專業(yè)性、高集成度、功能豐富等特點(diǎn),平臺(tái)涵蓋嵌入式計(jì)算機(jī)技術(shù)、嵌入式
    的頭像 發(fā)表于 01-29 09:55 ?456次閱讀
    高端<b class='flag-5'>嵌入式</b>實(shí)驗(yàn)<b class='flag-5'>平臺(tái)</b>

    什么是嵌入式系統(tǒng)?嵌入式系統(tǒng)的具體應(yīng)用

    嵌入式,一般是指嵌入式系統(tǒng)。用于控制、監(jiān)視或者輔助操作機(jī)器和設(shè)備的裝置。
    的頭像 發(fā)表于 12-20 13:33 ?2298次閱讀